
 
 

 

 
Review on Markov Random Field (Mrf) in Video 

Surveillance 
 

Kusuma T1,Dr.S.Jagannathn2 

1PhD Scholar,Department of Computer science, East West Institute of Technology, Bangalore 
2 Professor,Department of Computer science, APS Collage of Engineering, Bangalore 

 
  

I. INTRODUCTION 

Markov random field models have become useful in several areas of image processing. The success of MRFs 
can be attributed to the fact that they give rise to good, flexible, stochastic image models. The goal of image 
modeling is to find a suitable representation of the intensity distribution of a given image. What is adequate 
often depends on the task at hand and MRF image models have been versatile enough to be applied in the 
areas of image and texture synthesis, image compression, restoration, texture classification, and surface 
reconstruction. Tomographic reconstruction, image and texture segmentation. Our aim is to highlight the 
central ideas of this field using illustrative examples and provide pointers to the many applications. 
A guiding insight underlying most of the work on MRFs in image processing is that the information enclosed 
in the local, physical structure of images is sufficient to obtain a good, global image representation. This 
notion is captured by means of local, conditional probability distribution. Here, the image intensity at a 
particular location depends only on a neighborhood of pixels. 
The conditional distribution is called an MRF. For example, a typical MRF model assumes that the image is 
locally smooth except for relatively few intensity gradient discontinuities corresponding to region boundaries 
or edges. The MRF image models are defined on the image intensities and on a further set of hidden 
attributes (edges, texture and region labels). The observed quantities are usually noisy, blurred images, 
feature vectors or projectiondata in the case of emission tomography. The intensity image underlying the 
observations is needed in applications like restoration and tomographic reconstruction, whereas, region, 
boundary and texture labels are sought in applications like texture segmentation. 
Once the local, conditional probability distribution of the MRF is specified, there are five remaining steps 
involved. First, the joint distribution of the MRF is obtained. In this way, the image is represented in one 
global, joint probability distribution. Next, the process by which the observations are generated from the 
image is captured in a degradation probability distribution. Then, Bayes’ theorem is invoked to obtain the   
posterior probability distribution of the image given the observations. The posterior distribution gives us the 
probability that an   image (with smooth regions and sharp region boundaries) could have been degraded to 
obtain the particular observed noisy, blurred image. Finally, since the MRFs are specified with model 
parameters, these are estimated from a training set (if one exists) or adaptively along with the cost 
minimization  phase  alluded  to  earlier.  The  overall  MRF  framework fits well within Bayesian estimation. 
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 II. FRAME WORK FOR ESTIMATION AND INFERENCE 
As mentioned in the introduction, MRF image models represent knowledge in terms of “local” probability 
distributions. Specifically, the kinds of probability distributions generated by MRFs have a local 
neighborhood structure. Neighborhood systems commonly used by MRFs are depicted in below figure.   

 
                                        (a)                                                                                (b) 

Figure 1: Neighborhood systems commonly used by MRFs. 

Let us associate an image with a random process X whose element is Xs, where s Є S refers to a site in the 
image. 

 
Where X and x denote the random field and a particular realization respectively and G is the local 
neighborhood in keeping with the spirit of MRF modeling. The MRF model consists of a set of cliques. A 
clique is a collection of sites such that any two sites are neighbors. Different orders of cliques are shown in 
figure 1 (a). The order of a clique refers to the number of distinct sites that appear multiplicatively. We now 
calculate the clique energies involving the site by expanding the conditional probability density and 
collecting the terms. There are cliques of order one and two. They are  

 
The first term in above equation is order one and the latter two terms are of order two. 

III. MRF- GIBBS EQUIVALENCE 

Gibbs field is a representation of a set of random variables and their relationships. An example of a Gibbs 
Field is given in figure 2 edges are undirected, and connote some correlation between the connected nodes. 
 

 

Figure2: A Gibbs field with x1, x2, x3, x4, x5 

As with a Bayes’ Net, fewer connections mean more structure. Gibbs field are more powerful because they 
imply a way to write the joint probability of the random variables as functions over cliques in graph. 
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MRF and Gibbs fields both “look” the same in the sense that they are undirected graphs. Gibbs fields have an 
implicit probability function for each clique, while MRFs only specify the conditional independence. A 
natural question to ask is whether we can use the same graph that represents an MRF and same distributions.   
The Hamersley-Clifford theorem (also called the fundamental theorem of random fields) proves that a 
Markov Random field and Gibbs Field are equivalent with regard to the same graph. In other words: 

 Given any Markov Random field, all joint probability distributions that satisfies the conditional 
independence relationship specified by the corresponding field. 

 Given any Gibbs field, all of its joint probability distributions satisfy the conditional independence 
relationships specified by the corresponding independence relationships specified by the 
corresponding Markov Random field. 

IV. MAP ESTIMATION 

Restricting our focus to MAP estimation, we observe that MAP estimation reduces to minimizing the 
posterior energy function E(x). This minimization involves the different kinds of processes which make up 
X. For example, in edge preserving image restoration the process X includes both continuous image 
intensities and binary valued edge variables. 
Consequently, the minimization of the posterior objective function is a difficult problem due to the presence 
of non-trivial local minima. A general technique for finding global minima is Simulated Annealing (SA) but 
it is usually computationally very intensive. Recently, a lot of effort has been expended in obtaining good 
sub-optimal solutions to the MAP estimation problem. 
Deterministic Annealing (DA) is a general method that has emerged recently. Deterministic annealing 
methods begin with a modified posterior. 

 
Where   β > 0 is the inverse temperature. Note that the partition function is now a function of the inverse 
temperature. The terminology is inherited from statistical physics.  
The parameters are now estimated by maximizing the product of the conditional distributions at each site. 
The availability of a suitable training set is critical to both likelihood and pseudo-likelihood parameter 
estimation. When training set is not available, parameter estimation. When a training set is not available, 
parameters estimation and cost minimization proceed in lockstep. 

V. CONCLUSION 

In sum, the MRF framework is well suited to a wide variety of image processing problems. Our exposition 
has been brief and we have ignored important issues like validation, choice of the order of MRF models and 
size of training sets. MRF models being parametric, introduce a certain kind of basis into the image 
representation. This seems to be the right kind of bias for tasks like image restoration, tomographic 
reconstruction and texture segmentation. However, if the order of the chosen models is incorrect, high bias 
could result.  
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